18 research outputs found

    An algebraic multigrid method for Q2−Q1Q_2-Q_1 mixed discretizations of the Navier-Stokes equations

    Full text link
    Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily co-located at mesh points. Specifically, we investigate a Q2−Q1Q_2-Q_1 mixed finite element discretization of the incompressible Navier-Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees-of-freedom (dofs) are defined at spatial locations where there are no corresponding pressure dofs. Thus, AMG approaches leveraging this co-located structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity dof relationships of the Q2−Q1Q_2-Q_1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity dofs resembles that on the finest grid. To define coefficients within the inter-grid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier-Stokes problems.Comment: Submitted to a journa

    Performance of a parallel code for the Euler equations on hypercube computers

    Get PDF
    The performance of hypercubes were evaluated on a computational fluid dynamics problem and the parallel environment issues were considered that must be addressed, such as algorithm changes, implementation choices, programming effort, and programming environment. The evaluation focuses on a widely used fluid dynamics code, FLO52, which solves the two dimensional steady Euler equations describing flow around the airfoil. The code development experience is described, including interacting with the operating system, utilizing the message-passing communication system, and code modifications necessary to increase parallel efficiency. Results from two hypercube parallel computers (a 16-node iPSC/2, and a 512-node NCUBE/ten) are discussed and compared. In addition, a mathematical model of the execution time was developed as a function of several machine and algorithm parameters. This model accurately predicts the actual run times obtained and is used to explore the performance of the code in interesting but yet physically realizable regions of the parameter space. Based on this model, predictions about future hypercubes are made

    Non-invasive multigrid for semi-structured grids

    Full text link
    Multigrid solvers for hierarchical hybrid grids (HHG) have been proposed to promote the efficient utilization of high performance computer architectures. These HHG meshes are constructed by uniformly refining a relatively coarse fully unstructured mesh. While HHG meshes provide some flexibility for unstructured applications, most multigrid calculations can be accomplished using efficient structured grid ideas and kernels. This paper focuses on generalizing the HHG idea so that it is applicable to a broader community of computational scientists, and so that it is easier for existing applications to leverage structured multigrid components. Specifically, we adapt the structured multigrid methodology to significantly more complex semi-structured meshes. Further, we illustrate how mature applications might adopt a semi-structured solver in a relatively non-invasive fashion. To do this, we propose a formal mathematical framework for describing the semi-structured solver. This formalism allows us to precisely define the associated multigrid method and to show its relationship to a more traditional multigrid solver. Additionally, the mathematical framework clarifies the associated software design and implementation. Numerical experiments highlight the relationship of the new solver with classical multigrid. We also demonstrate the generality and potential performance gains associated with this type of semi-structured multigrid

    Graph Neural Networks and Applied Linear Algebra

    Full text link
    Sparse matrix computations are ubiquitous in scientific computing. With the recent interest in scientific machine learning, it is natural to ask how sparse matrix computations can leverage neural networks (NN). Unfortunately, multi-layer perceptron (MLP) neural networks are typically not natural for either graph or sparse matrix computations. The issue lies with the fact that MLPs require fixed-sized inputs while scientific applications generally generate sparse matrices with arbitrary dimensions and a wide range of nonzero patterns (or matrix graph vertex interconnections). While convolutional NNs could possibly address matrix graphs where all vertices have the same number of nearest neighbors, a more general approach is needed for arbitrary sparse matrices, e.g. arising from discretized partial differential equations on unstructured meshes. Graph neural networks (GNNs) are one approach suitable to sparse matrices. GNNs define aggregation functions (e.g., summations) that operate on variable size input data to produce data of a fixed output size so that MLPs can be applied. The goal of this paper is to provide an introduction to GNNs for a numerical linear algebra audience. Concrete examples are provided to illustrate how many common linear algebra tasks can be accomplished using GNNs. We focus on iterative methods that employ computational kernels such as matrix-vector products, interpolation, relaxation methods, and strength-of-connection measures. Our GNN examples include cases where parameters are determined a-priori as well as cases where parameters must be learned. The intent with this article is to help computational scientists understand how GNNs can be used to adapt machine learning concepts to computational tasks associated with sparse matrices. It is hoped that this understanding will stimulate data-driven extensions of classical sparse linear algebra tasks
    corecore